8 research outputs found

    A generalized multilevel inverter based on T-Type switched capacitor module with reduced devices

    Get PDF
    Conventional multilevel inverters have problems in terms of their complicated expansion and large number of devices. This paper proposes a modular expanded multilevel inverter, which can effectively simplify the expansion and reduce the number of devices. The proposed inverter can ensure the voltage balancing of the voltage-dividing capacitors. The cascading of the T-type switched capacitor module and the step-by-step charging method of the switched capacitors enable the inverter to achieve high output voltage levels and voltage gain. In addition, the inversion can be achieved without the H-bridge, which greatly reduces the total standing voltage of the switches. The nine-level inverter of the proposed topology can be realized with only ten switches, obtaining a voltage gain that is two times larger. The above merits were validated through theoretical analysis and experiments. The proposed inverter has good application prospects in medium- and low-voltage photovoltaic power generation

    A T-type switched-capacitor multilevel inverter with low voltage stress and self-balancing

    Get PDF
    This paper proposes a novel T-type multilevel inverter (MLI) based on the switched-capacitor technique. The proposed inverter not only achieves that the maximum voltage stress of the switches is less than the input voltage but also has a voltage boost capability, which makes it suitable in high voltage applications. It is worth mentioning that the proposed inverter features two topology extension schemes which help it achieve a higher output level and voltage gain. With the merit of low voltage stress and reduced power devices, a seven-level inverter can be achieved using only two capacitors. Moreover, capacitor voltage self-balancing capability can simplify the complexity of the circuit and control. The topology, operating principle, modulation strategy and analysis of the capacitor of the inverter are presented. The superiorities of the proposed inverter are investigated by comparing with recently proposed hybrid MLIs and switched-capacitor MLIs. Finally, a seven-level prototype is constructed to validate the correctness of the theoretical analysis and the feasibility and effectiveness of the proposed inverter

    Effects of enriched environment on the expression of β-amyloid and transport-related proteins LRP1 and RAGE in chronic sleep-deprived mice

    No full text
    Sleep plays an important role in the learning process and memory consolidation, and sleep deprivation (SD) leads to inadequate memory consolidation and plays an important role in brain development and plasticity. SD increases β-amyloid levels while impairing cognitive function. We explored the effect of enriched environment (EE) on β-amyloid and transporter protein LRP1 and receptor for advanced glycosylation end-products (RAGE) expression in chronic sleep deprived mice. We randomly divided mice into four groups (n = 10), the standard environment group (Ctrl group), the sleep deprivation group (SD group), the enriched environment intervention group (EE group), and the sleep deprivation plus environmental enrichment intervention group (SD + EE group). A modified multi-platform SD model was used to sleep deprive the mice for 19 h per day. Five hours of EE intervention was performed daily in the EE group and the SD + EE group, respectively. The behavioral measurements of mice were performed by Y-maze method and new object recognition; the expression levels of Aβ1-42, LRP1, and RAGE in prefrontal cortex and hippocampus of mice were measured by immunofluorescence; the expression levels of LRP1 and RAGE in prefrontal cortex and hippocampus were detected by Western blot. The results showed that EE could effectively ameliorate the effects of SD on cognitive impairment, reduce SD induced Aβ deposition, and decrease the expression of RAGE, while increase the expression of LRP1
    corecore